randomize_contours
Generate randomize contours given and image, label after resampling using MIRP processing library
First, we interpolate the inputs to a isotropic spacing, then get the supervoxel pertubations using the MIRP methods, as defined in:
Zwanenburg, A., Leger, S., Agolli, L. et al. Assessing robustness of radiomic features by image perturbation. Sci Rep 9, 614 (2019). https://doi.org/10.1038/s41598-018-36938-4
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_itk_volume |
str
|
path to itk compatible image volume (.mhd, .nrrd, .nii, etc.) |
required |
input_itk_labels |
str
|
path to itk compatible label volume (.mha) |
required |
output_dir |
str
|
output/working directory |
required |
resample_pixel_spacing |
float
|
voxel size in mm |
required |
resample_smoothing_beta |
float
|
smoothing beta of gaussian filter |
required |
Returns:
Name | Type | Description |
---|---|---|
dict |
metadata about function call |
Source code in src/luna/radiology/cli/randomize_contours.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
|